A fast summation method for oscillatory lattice sums
نویسندگان
چکیده
منابع مشابه
Gaussian quadrature for sums: A rapidly convergent summation scheme
Gaussian quadrature is a well-known technique for numerical integration. Recently Gaussian quadrature with respect to discrete measures corresponding to finite sums has found some new interest. In this paper we apply these ideas to infinite sums in general and give an explicit construction for the weights and abscissae of Gaussian formulas. The abscissae of the Gaussian summation have a very in...
متن کاملA fast encoding method for lattice codes and quantizers
In an earlier paper the authors described a very fast method which, for the root lattices A,, D,, E,,, their duals and certain other lattices, finds the closest lattice point to an arbitrary point of the underlying space. If the lattices are used as codes for a Gaussian channel, the algorithm provides a fast decoding procedure, or if they are used as vector quantizers the algorithm performs the...
متن کاملA FAST GA-BASED METHOD FOR SOLVING TRUSS OPTIMIZATION PROBLEMS
Due to the complex structural issues and increasing number of design variables, a rather fast optimization algorithm to lead to a global swift convergence history without multiple attempts may be of major concern. Genetic Algorithm (GA) includes random numerical technique that is inspired by nature and is used to solve optimization problems. In this study, a novel GA method based on self-a...
متن کاملTwofold fast summation
Debugging accumulation of floating-point errors is hard; ideally, computer should track it automatically. Here we consider twofold approximation of exact real with value + error pair of floating-point numbers. Normally, value + error sum is more accurate than value alone, so error can estimate deviation between value and its exact target. Fast summation algorithm, that provides twofold sum of ∑...
متن کاملFast High Precision Summation ∗
Given a vector pi of floating-point numbers with exact sum s, we present a new algorithm with the following property: Either the result is a faithful rounding of s, or otherwise the result has a relative error not larger than epsKcond ( ∑ pi) for K to be specified. The statements are also true in the presence of underflow, the computing time does not depend on the exponent range, and no extra m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2017
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.4976499